Cost-Aware Retraining for Machine Learning

Notations

- Current Batch t
- Labeled Data D_t
- Unlabeled Queries Q_t
- Model M_t trained with $D_{t'}$, $t' \leq t$
- Parameters θ
- Decisions:
 - Keep model M_t
 - Retrain model using D_t

Cost Matrix C

$$C[t', t] = \begin{cases}
\text{Staleness Cost} & \text{if } t' < t \\
\text{Retraining Cost} & \text{if } t' = t \\
\infty & \text{otherwise}
\end{cases}$$

Staleness Cost $\overline{V}_{t,t'}$

- Cost of old model M_t at batch t
- Query-aware performance cost
- Scenario 1: Low staleness cost
- Scenario 2: High staleness cost

Retraining Strategy S

- Strategy is a set of decisions
- Cost of all decisions is strategy cost
- Aim is to minimize strategy cost $S = \{\text{Keep}, \text{Keep}, \text{Retrain}, \text{Retrain}\}$

Retraining Cost κ

- Trade-off parameter
- Between resources & performance
- Low κ: performance is important
- High κ: resources are important

CARA Variants

1. CARA-T
 - θ is a threshold τ
 - If staleness cost $> \tau$ then Retrain
2. CARA-CT
 - θ is a cumulative threshold τ_{cum}
 - Tracks cumulative staleness cost
 - If larger than τ_{cum} then Retrain
3. CARA-P
 - θ is a periodicity ϕ
 - Retrain decision after every ϕ batches

Results

<table>
<thead>
<tr>
<th>θ^* of Cara variants for CovCon-D</th>
<th>τ</th>
<th>τ_{cum}</th>
<th>ϕ^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>如意实用</td>
<td>1170</td>
<td>11.20</td>
<td></td>
</tr>
<tr>
<td>如意实用-H</td>
<td>1507</td>
<td>13.89</td>
<td></td>
</tr>
<tr>
<td>如意实用-CT</td>
<td>1368</td>
<td>13.33</td>
<td></td>
</tr>
<tr>
<td>如意实用-P</td>
<td>1248</td>
<td>10.75</td>
<td></td>
</tr>
</tbody>
</table>

Ananth Mahadevan1 Michael Mathioudakis1

1 Department of Computer Science, University of Helsinki