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A B S T R A C T

Retraining a machine learning (ML) model is essential for maintaining its performance as the data change over
time. However, retraining is also costly, as it typically requires re-processing the entire dataset. As a result, a
trade-off arises: on the one hand, retraining an ML model too frequently incurs unnecessary computing costs;
on the other hand, not retraining frequently enough leads to stale ML models and incurs a cost in loss of
accuracy. To resolve this trade-off, we envision ML systems that make automated and cost-optimal decisions
about when to retrain an ML model.

In this work, we study the decision problem of whether to retrain or keep an existing ML model based
on the data, the model, and the predictive queries answered by the model. Crucially, we consider the costs
associated with each decision and aim to optimize the trade-off. Our main contribution is a Cost-Aware
Retraining Algorithm, Cara, which optimizes the trade-off over streams of data and queries. To explore the
performance of Cara, we first analyze synthetic datasets and demonstrate that Cara can adapt to different data
drifts and retraining costs while performing similarly to an optimal retrospective algorithm. Subsequently,
we experiment with real-world datasets and demonstrate that Cara has better accuracy than drift detection
baselines while making fewer retraining decisions, thus incurring lower total costs.
1. Introduction

Retraining a machine learning (ML) model is essential in the pres-
ence of data drift [1], i.e., continuous changes in the data due to
factors such as system modifications, seasonality, or changes in user
preferences. As a data drift occurs, the performance of an ML model
trained on old data typically decreases — or, more generally, is not
as high as it could be if it took advantage of the new data. As a
result, maintaining the performance of an ML model calls for an online
decision on whether to Retrain or Keep the existing ML model. In
what follows, we refer to any algorithm that makes such a decision as
a retraining algorithm.

Several methods exist to detect data drift [2–4] by monitoring the
errors of an ML model on a stream of labeled samples, i.e., data.
These methods decide to retrain the ML model whenever a drift is
detected. However, note that (i) ML models are typically used to predict
a stream of unlabeled samples [5], i.e., queries, and (ii) (re)training
is associated with costs, such as the monetary cost for (re)training
a model on a cloud service or the energy cost for executing the
training algorithm [6]. Considering queries and costs in addition to
data is essential in deciding whether to retrain a model. To see why,
consider a real estate firm that uses an ML model to predict housing
prices. Suppose, the data used to train the ML model represents the
price distribution of all houses in the market. However, the customer
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queries concern only a niche of this market, for example, mansions.
In such a case, if new data suggests prices have changed for studio
apartments but not for mansions, retraining the model will not improve
its performance on queries significantly enough to justify the retraining
cost. By contrast, if the new data indicates that prices for mansions
have changed significantly, then the potential drop in performance on
queries will warrant a Retrain decision. Unfortunately, many existing
drift detection methods do not consider queries or retraining costs,
which may lead to suboptimal decisions for scenarios like the above.

The above discussion gives rise to two costs when deciding whether
to retrain. The first is a model staleness cost, i.e., the performance loss
due to keeping an ML model trained on old data. Typically, when a data
drift occurs, a model trained on old data will have lower performance
compared to an ML model trained on fresher data. Note that while
we use the notion of ‘‘cost’’ in a general rather than strictly monetary
sense, a performance loss often does translate into a monetary cost.
For example, in the scenario of a real estate firm described earlier,
a performance loss would lead to a loss in customer satisfaction and,
eventually, a monetary cost.

The second type of cost is the model retraining cost, i.e., the resources
spent to train an ML model on new data. Again, this cost may be
monetary (e.g., renting a machine from an online cloud service to
vailable online 18 March 2024
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execute the training) or of other kinds (e.g., energy consumption). This
cost depends on the class of ML models used, the type of data, and the
training algorithm.

There is a direct trade-off between these two costs of staleness and
retraining. While retraining frequently results in a fresher ML model,
the performance increase may be marginal when compared to the cost
of retraining. On the other hand, infrequent retraining reduces the
retraining cost but results in a stale model with performance loss.

Our contributions In this paper, we formalize and study the trade-
ff between staleness and retraining costs. Our main contribution is
n online Cost-Aware Retraining Algorithm (Cara) that optimizes the

trade-off between the two costs. Cara is defined as a function that makes
Retrain or Keep decisions based on a choice of retraining parameters
hat consider both data and queries, along with the costs associated
ith each decision. We present three variants of Cara for different such
arameters. In addition, we present a retrospective optimal algorithm
racle, which we use as a baseline in our experimental comparisons

o provide an upper bound on the performance of online retraining
lgorithms. In more detail, in synthetic experiments, we vary both data
nd query distribution and showcase how Cara captures and adapts to
ifferent data drifts, achieving similar performance to an optimal algo-
ithm. Moreover, using real-world datasets, we compare with standard
rift detection baselines from the literature and demonstrate that Cara
xhibits better accuracy, but with fewer Retrain decisions, and thus

lower total costs.

2. Related work

Gama et al. [1] provide a taxonomy of methods that handle data
drift based on (1) whether the method uses single or multiple models,
(2) whether the method adapts to data drift blindly or uses informed
metrics, and (3) whether the method retrains or incrementally updates
the model. Based on this taxonomy, our proposed Cara algorithm
is a single-model, informed model-independent retraining method.
Furthermore, we identify the following categories of existing work in
the literature related to our contributions.

Multiple Model Methods These methods have multiple pre-existing
trained models which are reused in the future. They monitor the data
stream and select the best model from the pre-existing set. Pesarang-
hader et al. [7] use an error, memory and runtime (EMR) measure
which they balance to select the best model. Mallick et al. [8] propose
a method that can handle both covariate and concept drifts while
picking the best model. While such methods explore the trade-off
between different costs, they do not consider the decision to retrain,
but rather choose from a fixed set of pre-existing models. By contrast,
Cara addresses the problem of retraining ML models.

Informed Model-Independent Methods These methods use model-
independent change detectors to identify data drifts. When a drift is
detected, these methods adapt by making a Retrain (or update) de-
ision. These change detectors monitor a model’s error over a window
nd use statistical principles such as Page–Hinkley [9], Kolmogorov–
mirnov [4], Hoeffding bounds [10] or PAC learning [2,3] to detect
data drift. Other methods such as [11] train a neural network to

redict a concept drift and avoid statistical hypothesis tests. However,
nlike Cara, these methods only detect concept drift and ignore the
ovariate drifts in both data and query streams. Furthermore, unlike
ara, they do not balance the trade-off between the cost of retraining
nd make several unnecessary Retrain decisions due to false positive
etections.

Model-Specific Incremental Methods These methods use change de-
ectors that are tightly integrated with the model and update the model
ncrementally instead of making Retrain decision. Bifet and Gavaldà
12] propose the Hoeffding Adaptive Tree (HAT), which extends the
tandard Hoeffding Tree [13] by using the ADWIN drift detector [3]
2

a

n each node of the decision tree to monitor its performance. Upon
signal from the drift detector, an alternate branch is trained in

arallel and then swapped out when the performance degrades further.
imilarly, Gomes et al. [14] propose an adaptive random forest which
lso uses ADWIN to monitor errors inside the nodes of each tree. Such
odel-specific methods typically make a decision to update the model

fter every new batch of data. Therefore, when using such model-
pecific methods, there is no ability to control when update decisions
re made and thus offer no control over the trade-off between the
ost of the update decision and the model’s performance. In contrast,
ara offers fine-grained control over the trade-off between retraining
ost and model staleness. Furthermore, Cara is model-independent and
orks with any generic ML model.

ata-Aware Retraining These methods use data-aware metrics to
nform their Retrain decisions. Žliobaitė et al. [15] propose a Return
n Investment (ROI) metric to decide when a Retrain decision is
seful. They show that when the gain in performance is larger than the
esource cost a model should be updated. However, unlike our work,
hey only perform an offline analysis and suggest monitoring the ROI
uring online evaluation. Jelenčič et al. [16] combine a drift detector
etric with KL-divergence metric to assess the optimal time to retrain
model. Their experiments show that retraining when both metrics

ndicate a data drift results in better model performance. However,
nlike our work, they do not consider the resource costs of retraining
he ML model while making decisions.

. Preliminaries

In this section, we introduce the terms and notations that are
ecessary for the presentation of our technical contribution.

ata Each data entry (𝑥, 𝑦) consists of a point 𝑥 ∈ R𝑑 and a target 𝑦. We
se 𝐗 and 𝐲 to refer to a set of points and their respective targets. In
hat follows, we assume a stream setting in which the data 𝐷 = (𝐗, 𝐲)
rrive over time in batches, with batch 𝑡 denoted by 𝐷𝑡 =

(

𝐗𝑡, 𝐲𝑡
)

.
Data drift occurs when the arriving data change over time. There

re two main types of data drift as defined by Gama et al. [1]. The
irst is covariate drift (or virtual drift), when only the distribution
f the points 𝑝(𝑥𝑡) changes with time. This occurs when points in
ifferent batches come from different regions of the feature space. The
econd is concept drift, when the conditional distribution of the targets
(𝑦𝑡|𝑥𝑡) changes with time. This occurs when the underlying relation-
hip between the target and the points is different across different
ata batches. Furthermore, based on the frequency and duration of the
hange, concept drift can be categorized according to different patterns
uch as sudden, incremental, recurring, etc.

ueries An individual query is a point in a 𝑑-dimensional space, 𝑞 ∈
𝑑 , without a ground-truth target. In the streaming setting queries also
rrive at every batch 𝑡 denoted by 𝑞𝑡 ∈ 𝑄𝑡. As queries do not have any
round-truth target 𝑦, query streams may only exhibit a covariate drift
hen the query distribution 𝑝(𝑞𝑡) changes with time.

odel We use the term model to refer to a function 𝑀 ∶  →  ,
here  ∈ R𝑑 and  is the set of targets for the problem. Models are

rained in a supervised manner using data 𝐷 that contain both points
and ground-truth targets 𝑦. Once trained, a model is used to predict

he target incoming query points 𝑦̂ ∶= 𝑀(𝑞). In the stream setting, 𝑀𝑡
enotes a model trained using the data from batch 𝑡 i.e., 𝐷𝑡.

etraining Algorithm A retraining algorithm decides whether to re-
rain the ML model or not. Formally, it consists of a decision function

with parameters 𝜃. At each batch 𝑡, the decision function  receives
he data 𝐷𝑡, queries 𝑄𝑡 and existing model 𝑀𝑡′ (trained at batch 𝑡′ <
).  makes either a Retrain or Keep decision based on its input
nd parameters 𝜃, where 𝜃 typically consists of cost-related thresholds.
Retrain decision indicates that the model must be retrained,

hile the Keep decision indicates that the existing model will be kept
ithout retraining. In what follows, we denote decisions of retraining

( ′ )
lgorithms as  𝑡, 𝑡 , 𝜃 ∈ {𝙺𝚎𝚎𝚙, 𝚁𝚎𝚝𝚛𝚊𝚒𝚗}.
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Fig. 1. First scenario. (a) Initial data 𝐷0 and model 𝑀0. Concept drift occurs at 𝑡 = 1. (b) Queries are far from misclassifications. (c) Queries are close to misclassifications.
Fig. 2. Second scenario. (a)–(c) Data has no concept or covariate drift in batches 𝑡 = 1 till 𝑡 = 3. Queries show covariate shift, moving from being far from the decision boundary
n (a) to being closer to the misclassifications in (c).
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. Problem formulation

In this section, we define the costs considered when making a Re-
rain or Keep decision and formalize the cost-optimization problem
e address. First, in Section 4.1, we motivate and define the cost of
odel staleness in terms of expected query performance. Second, in

ection 4.2, we define the model retraining cost which represents the
esources required to retrain a model on a batch of new data. Third,
n Section 4.3, we define a cost matrix that is computed offline retro-
pectively, given all the data and query batches within a given time
nterval, and which represents the possible costs for all the different
ossible retraining decisions in that time interval. Based on this cost
atrix, we define the cost of any retraining strategy, i.e., any sequence

f Retrain & Keep decisions. Lastly, in Section 4.4, and based on the
forementioned definitions, we define the problem statement.

.1. Staleness cost

The performance of a model potentially changes as the data under-
oes a data drift. In this paper, we aim to quantify the cost of keeping a
odel trained on old data, referred to as the ‘‘staleness cost’’, in terms

f the model’s query performance. Let us ‘build’ the formal definition of
his cost as we discuss two exemplary scenarios that demonstrate how
he performance of a model may change for different cases of data drift
nd queries.

In the first scenario, shown in Fig. 1, we consider a linear clas-
ification model trained on the initial 2D data at batch 𝑡 = 0 in
ig. 1(a). Then, in the following batch 𝑡 = 1, a concept drift occurs
s seen in Fig. 1(b) and (c) changing the distribution of class labels.
his leads to the stale model 𝑀0 misclassifying some new data points.
ypical concept drift methods will detect the drift in the data and make
Retrain decision ignoring the query distribution. However, the

erformance of the model does depend on the query distribution of the
ueries on which it is called to make a prediction, and therefore so does
he cost associated with a potential performance loss. Specifically, if the
uery region is far from the misclassification region, as in Fig. 1(b),
hen a Retrain decision will yield only small improvements in query
erformance, and so the staleness cost of a decision to Keep the current
odel is small in this case. Conversely, if the query region is closer to

he misclassification region, as in Fig. 1(c), then a Retrain decision
3

ay improve query performance significantly, and so the staleness cost
f a decision to Keep the current model is large in this case.

To distinguish between these two cases, we consider the model’s
isclassifications in the vicinity of the queries. Towards this end, we
efine the model staleness cost for a single query point 𝑞 given a model

and data 𝐷 as

(𝑞,𝐷,𝑀) = 1
|𝐷|

∑

(𝑥,𝑦)∈𝐷
sim(𝑞, 𝑥) ⋅ 𝓁(𝑀,𝑥, 𝑦), (1)

here sim(𝑞, 𝑥) is the similarity between the query and data point and
(𝑀,𝑥, 𝑦) is the loss of the model on the data point 𝑥 and labels 𝑦. The
im(⋅, ⋅) function captures the probability that a query’s label is similar
o a data point and is typically defined as a function of their distance.
ence, the staleness cost as defined in Eq. (1) measures the expected

oss of a single query in the region of the data given a model. Back
o the scenario of Fig. 1, the staleness cost of the queries of Fig. 1(b)
ould be small, because the misclassifications (large 𝓁) occur in areas
way from the queries (small sim). Conversely, the staleness cost of the
ueries of Fig. 1(c) would be large, because the misclassifications (large
) occur in areas near the queries (large sim).

Building upon Eq. (1), we define the absolute staleness cost of all
ueries 𝑄𝑡 in batch 𝑡 given data 𝐷𝑡 and model 𝑀𝑡′ trained at batch 𝑡′ ≤ 𝑡
s the sum of all the individual 𝜓 costs and is defined as
(

𝑄𝑡, 𝐷𝑡,𝑀𝑡′
)

=
∑

𝑞∈𝑄𝑡

𝜓
(

𝑞,𝐷𝑡,𝑀𝑡′
)

. (2)

ore generally, we use 𝛹𝑡1 ,𝑡2 ,𝑡3 to denote 𝛹
(

𝑄𝑡1 , 𝐷𝑡2 ,𝑀𝑡3

)

— the
bsolute staleness cost of using model from batch 𝑡3 for the queries in
atch 𝑡1 given the data from batch 𝑡2.

In the second scenario, shown in Fig. 2, the data stream exhibits
o drift from 𝑡 = 1 to 𝑡 = 3, but the query stream does drift over
hree batches. Specifically, in each batch, the query distribution moves
owards the decision boundary of the linear classifier 𝑀0. Because of
his, the absolute staleness cost 𝛹 , as defined in Eq. (2), increases
rom 𝑡 = 1 to 𝑡 = 3, because the number of data misclassifications
ncrease as the queries move closer to the decision boundary. However,
f the data distribution is static, retraining would not improve the query
erformance: as the data remain the same, the model that would be
rained on them would also be the same. To identify such a scenario
nd prevent unnecessary Retrain decisions, we measure the relative
ncrease in the staleness cost for the queries between two batches of
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data. Towards this end, given the current batch 𝑡 and the batch when
the model was trained 𝑡′ ≤ 𝑡, we define a relative staleness cost as

𝛹 𝑡,𝑡′ ∶= 𝛹𝑡,𝑡,𝑡′ − 𝛹𝑡,𝑡′ ,𝑡′ . (3)

Here, 𝛹 𝑡,𝑡′ measures the relative increase in staleness cost of using
odel 𝑀𝑡′ for the queries 𝑄𝑡 from 𝐷𝑡′ (data used to train the model)

to 𝐷𝑡 (data from current batch).

4.2. Retraining cost

Resources such as time and monetary budget are spent when retrain-
ing an ML model. The amount of resources spent depends on various
factors, such as the class of the ML model and the dimensionality of the
dataset. For example, assume it costs 𝐴$ per hour on AWS SageMaker1

to train a standard model configuration. However, not retraining results
in using a stale model with decreased accuracy causing business losses
of 𝐵$ per hour. Depending on the values of 𝐴 and 𝐵, it may be worth
retraining more or less frequently. Therefore, there is a clear trade-off
between the performance costs from model staleness and the resource
costs from retraining the model.

We define retraining cost denoted by 𝜅𝑡 as the relative value of the
resources spent in the common units of the model staleness cost at
batch 𝑡. For example, assume a model takes 5 min to train, and the
staleness cost measures the expected number of query misclassifica-
tions. Then, 𝜅𝑡 = 150 indicates that 5 min is equivalent to 150 query
misclassifications i.e., one is willing to trade 1 min of time for 30 query
misclassifications. Therefore, larger values of 𝜅𝑡 signifies resources are
more important than model staleness cost and vice-versa. In the real
world, the 𝜅𝑡 is dependent on the use-case and business requirements,
and is set by the administrator of the ML system.

4.3. Cost matrix and strategy cost

Having defined the staleness and retraining costs, let us now collect
in one matrix 𝐶 the costs associated with the possible decisions at
different times 𝑡 to Keep or Retrain a model that was trained at
time 𝑡′. Specifically, given a set of queries and data 𝐷𝑡 and 𝑄𝑡 where
≤ 𝑡 ≤ 𝑇 and models 𝑀𝑡′ where 𝑡′ ≤ 𝑡 we define an upper-triangular

ost matrix 𝐶 as follows

[𝑡′, 𝑡] =

⎧

⎪

⎨

⎪

⎩

𝛹 𝑡,𝑡′ if 𝑡′ < 𝑡
𝜅𝑡 if 𝑡′ = 𝑡
∞ otherwise,

(4)

As defined, the upper-diagonal entries correspond to batches 𝑡 for
hich a decision was made to Keep a model trained from a previous
atch 𝑡′ < 𝑡, incurring a staleness cost 𝛹 𝑡,𝑡′ but no retraining cost.
oreover, the diagonal entries correspond to batches 𝑡 = 𝑡′ for which
decision was made to Retrain a model, incurring a retraining cost
𝑡 but no staleness cost, as the new model is based on the latest data
i.e., 𝛹 𝑡,𝑡 = 0).

A retraining strategy is a sequence of the decisions made at each
batch as seen in Algorithm 1. Formally, we define a strategy as the
sequence of the model used at every batch 𝑡 ∈ [0, 𝑇 ]

=
(

𝑠0, 𝑠1,… , 𝑠𝑡,… , 𝑠𝑇
)

, (5)

where 𝑠𝑡 ∈ [0, 𝑡] denotes that the model 𝑀𝑠𝑡 was used at batch 𝑡. Hence,
f 𝑠𝑡 = 𝑡 then a Retrain decision was made at batch 𝑡 otherwise a
eep decision was made. The cost of a given retraining strategy is the
um of the cost for every batch defined as

ost (𝑆) =
𝑇
∑

𝑡=0
𝐶[𝑠𝑡, 𝑡]. (6)

1 See https://aws.amazon.com/sagemaker/pricing/ for actual pricing de-
ails.
4
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Algorithm 1 Retraining Algorithm
Input: Data 𝐷, Queries 𝑄, Decision Function , parameters 𝜃, 𝑇start,
𝑇end
Output: Retraining Strategy 𝑆
Start evaluation with 𝑡′ ← 𝑇start
𝑆 ← ∅
Train model 𝑀𝑡′ with 𝐷𝑡′

for 𝑡 ← 𝑇start to 𝑇end do
𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← (𝑡, 𝑡′, 𝜃)
if 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = Retrain then

Retrain model with 𝐷𝑡 and 𝑡′ ← 𝑡
end if
𝑆 ← 𝑆 ∪

{

𝑡′
}

end for
Return 𝑆

4.4. Problem statement

For a retraining algorithm, we assume two phases, an offline opti-
mization phase and an online evaluation phase.

In the offline phase historical streaming data and queries are avail-
ble. Typically, these data and queries would be collected and stored
uring a prior run of the system. Let the data 𝐷𝑡 and queries 𝑄𝑡
orresponding to batches 0 ≤ 𝑡 ≤ 𝑇offline be available in the offline
hase. During this phase, the complete offline cost matrix can be
omputed using Eq. (4) and analyzed. The goal during this phase is
o learn the patterns in the streams and optimize the parameters of the
etraining algorithm.

In the online phase batches 𝑇offline < 𝑡 ≤ 𝑇online arrive sequentially.
he retraining algorithm is evaluated using Algorithm 1 with 𝑇start =
offline + 1 and 𝑇end = 𝑇online. At each batch 𝑡 the decision function  is
alled with its, possibly optimized, parameters. If a Retrain decision
s made then a new model is trained otherwise the existing model is
ept. At the end of the evaluation, we obtain the online retraining
trategy and its corresponding online strategy cost.

roblem 1. Learn a decision function  in the offline phase which
inimizes the online retraining strategy cost.

. Cara: Cost-Aware Retraining Algorithm

In this section, we present three cost-aware decision functions ,
nd their parameters 𝜃. Each decision function gives rise to a variant
f the retraining algorithm described in Algorithm 1. We collectively
efer to the three variants as Cost Aware Retraining Algorithm, Cara.
he variants are cost-aware because their parameters are chosen during
he offline phase to optimize the trade-off between model staleness and
etraining costs.

During the offline phase each retraining algorithm finds parameters
∗ that minimize the offline strategy cost as follows:

∗ = arg min
𝜃

cost (𝑆) , (7)

here 𝑆 is the retraining strategy from Algorithm 1 with 𝑇start = 0
nd 𝑇end = 𝑇offline. This optimization is possible because all the data
nd queries in the offline phase are available in advance, as described
n Section 4.4. These optimal parameters 𝜃∗ balance the trade-off
etween the staleness and retraining costs and are then used with the
ecision function for the online evaluation. In practice, we perform the
ptimization using techniques such as grid search over the space of all

arameters.

https://aws.amazon.com/sagemaker/pricing/
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5.1. Cara-t: Threshold variant

The Cara-T variant has a threshold parameter 𝜏 and its decision
function  is defined in Eq. (8).

(𝑡, 𝑡′, {𝜏}) =

{

𝙺𝚎𝚎𝚙 𝛹 𝑡,𝑡′ < 𝜏
𝚁𝚎𝚝𝚛𝚊𝚒𝚗 otherwise.

(8)

During the online phase, if the current model staleness cost is larger
han the threshold a Retrain decision is made.

.2. Cara-ct: Cumulative threshold variant

The Cara-CT variant inspired by [9] has a cumulative threshold
arameter 𝜏cum and its decision function  is defined in Eq. (9).

(𝑡, 𝑡′,
{

𝜏cum
}

) =

{

𝙺𝚎𝚎𝚙
∑𝑡
𝑗=𝑡′+1 𝛹 𝑗,𝑡′ < 𝜏cum

𝚁𝚎𝚝𝚛𝚊𝚒𝚗 otherwise
(9)

During the online phase a variable tracks the cumulative cost,
adding the current staleness cost at every batch from the last Retrain
decision i.e., 𝑡′ until the current time 𝑡. If this cumulative cost is
larger than the parameter, then a Retrain decision is made and the
cumulative cost is reset to 0.

5.3. Cara-p: Periodic variant

The Cara-P variant has a periodicity 𝜙 and initial offset 𝑎. During the
online phase, the algorithm makes a Retrain decision every 𝜙 batch
after an initial 𝑎 number of batches. The decision function is defined
in Eq. (10).

(𝑡, 𝑡′, {𝜙, 𝑎}) =

{

𝚁𝚎𝚝𝚛𝚊𝚒𝚗 (𝑡 − 𝑎)%𝜙 = 0
𝙺𝚎𝚎𝚙 otherwise

(10)

Cara-P is a generalized version of a static periodic adaptation policy
described in Žliobaitė et al. [15] also used in many real-world frame-
works such as TensorFlow Extended [17]. The difference is that Cara-P
optimizes for the trade-off between the model staleness and retraining
costs for a given dataset to find the optimal periodicity instead of using
a pre-defined periodicity.

5.4. Complexity analysis

Each Cara variant computes the model staleness cost 𝛹 at each batch
during online evaluation. For analysis purposes, assume that the size
f a batch of data and queries are 𝐵𝐷 and 𝐵𝑄, respectively. Then,

the time complexity is (𝐵𝑄𝐵𝐷), dominated by the pairwise similarity
computation, and the memory complexity is (𝐵𝑄 + 2𝐵𝐷) for storing
the data and queries.

6. The Oracle Algorithm

In this section we present the Oracle algorithm which returns the op-
timal retraining strategy retrospectively. The algorithm requires com-
plete knowledge of all future batches of queries and data. Given this
knowledge, the algorithm finds the retraining strategy which has the
lowest strategy cost. In our experiments, we use the Oracle algorithm
in the online phase to provide a lower bound for the strategy cost of
any retraining algorithm.

Assume an oracle provides the optimal strategy as a set of the
batches when a Retrain decision should occur, denoted by 𝑂. Then
the decision function follows the oracle as seen in Eq. (11).


(

𝑡, 𝑡′, {𝑂}
)

=

{

𝚁𝚎𝚝𝚛𝚊𝚒𝚗 if 𝑡 ∈ 𝑂
(11)
5

𝙺𝚎𝚎𝚙 otherwise
Algorithm 2 Memoize DP Table
Input: Cost Matrix 𝐶, number of batches 𝑇
Output: Memoized DP table 𝑉
Initialize 𝑉 as (𝑇 + 1) × (𝑇 + 1) matrix filled with ∞
for 𝑡 = 0 to 𝑇 do
𝑉 [𝑡, 0] ←

∑𝑡
𝑡′=0 𝐶[0, 𝑡

′] {fill first row}
end for
for 𝑡 ← 1 to 𝑇 do
for 𝑝← 1 to 𝑡 do
if 𝑡 = 𝑝 then
𝑉 [𝑡, 𝑝] ← 𝐶[𝑡, 𝑡] + min𝑡′ 𝑉 [𝑡 − 1, 𝑡′]

else
𝑉 [𝑡, 𝑝] ← 𝐶[𝑝, 𝑡] + 𝑉 [𝑡 − 1, 𝑝]

end if
end for

end for
Return: 𝑉

Algorithm 3 Oracle Retrains
Input: DP table 𝑉 , number of batches 𝑇
Output: Oracle Retrain decision batches 𝑂
𝑝 ← arg min𝑝′ 𝑉 [𝑇 , 𝑝′]
𝑂 ← {𝑝}
while 𝑝 > 0 do
𝑝 ← arg min𝑝′ 𝑉 [𝑝 − 1, 𝑝′]
𝑂 ← 𝑂 ∪ {𝑝}

end while
Return 𝑂

To find the optimal Retrain decision set 𝑂, we first define the
ptimal strategy as

∗ = arg min
𝑆

cost (𝑆) . (12)

Then, we formulate a dynamic programming (DP) problem to find the
optimal strategy cost and subsequently the optimal strategy.

Let 𝑣 (𝑡, 𝑝) be the strategy cost at batch 𝑡 using a model trained at
batch 𝑝. Then, the optimal strategy cost at 𝑡 is

𝑣∗ (𝑡) = min
𝑝∈[0,𝑡]

𝑣 (𝑡, 𝑝) , (13)

where the term 𝑣 (𝑡, 𝑝) term is defined as

𝑣 (𝑡, 𝑝) =
𝑡

∑

𝑡′=𝑝
𝐶[𝑝, 𝑡′] + 𝑣∗ (𝑝 − 1) . (14)

The first term in Eq. (14) is the total cost of using the model trained at
batch 𝑝 in the batches from 𝑝 to 𝑡. The second term in Eq. (14) is the
optimal strategy cost prior to the last model retraining. This sets up the
recursive formulation for the DP problem. Therefore, solving for 𝑣∗ (𝑇 )
yields the optimal strategy cost at the end of batch 𝑇 .

Algorithm 2 describes a top-down method to memoize the strategy
costs 𝑣 (⋅, ⋅) in the form of a DP table 𝑉 using the complete cost matrix
𝐶. Then, Algorithm 3 uses the computed 𝑉 and returns the oracle set 𝑂.
Note, 𝑂 is a partial strategy consisting of only the Retrain decision
batches. The optimal strategy 𝑆∗ can be obtained by expanding 𝑂 to
include the Keep decisions.

The Oracle algorithm requires (𝑇 2) memory to materialize the
memoized table 𝑉 and the cost matrix 𝐶, where 𝑇 is the number of
batches. The algorithm has three stages, namely computing 𝐶, mem-
oizing 𝑉 and returning the oracle retrains 𝑂. Therefore, the overall
running time complexity is (𝑇 2𝐵𝐷𝐵𝑄 + 𝑇 2 + 𝑇 ) = (𝑇 2𝐵𝐷𝐵𝑄), where

𝐵𝐷 and 𝐵𝑄 are the size of a batch of data and query.
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Table 1
Dataset statistics. 𝑁 is number of points, 𝑑 is number of dimensions, 𝑇offline and 𝑇online
indicate the offline and online batches retrospectively.

Name 𝑁 𝑑 𝑇offline 𝑇online

Gauss 100 000 2 25 100
Circle 100 000 2 25 100
CovCon 100 000 2 25 100

Electricity 45 312 6 25 100
Airlines 539 383 7198a 25 100
Covertype 581 000 54 25 100

a 5 nominal attributes into 7196 one-hot and 2 numeric features.

7. Experimental setup

We evaluate our Cara algorithm against the Oracle algorithm and
other baselines on several synthetic and real-world datasets shown in
Table 1. In our experiments, we have fixed batch sizes and therefore
consider a static retraining cost, i.e., 𝜅𝑡 = 𝜅. We focus on the task of
inary classification, i.e.,  = {0, 1}. Hence, to compute the 𝛹 cost, we
se the radial basis function (RBF) kernel for similarity and the 0-1 loss
unction defined as follows

sim(𝑞, 𝑥) = exp
(

−𝛾‖𝑞 − 𝑥‖2
)

, (15)

(𝑀,𝑥, 𝑦) =  (𝑀(𝑥) ≠ 𝑦) (16)

here 𝛾 is the inverse of the variance and  is the indicator function.

.1. Synthetic datasets

We create several synthetic datasets with different concept and
ovariate drifts. In each synthetic dataset, we generate 100 batches and

in each batch we create 1000 data points and labels.

auss A 2D synthetic dataset that has a gradual covariate shift. Data
oints are sampled from a Gaussian whose centers move at each batch
ntroducing covariate drift. These points are labeled using a parabolic
lassification boundary. At each batch 𝑡, points (𝑥1, 𝑥2) are sampled

from a Gaussian distribution with centers at (𝑐, 0.5 − 𝑐), where 𝑐 =
((𝑡 + 1)%15)∕30. The decision boundary for each point

(

𝑥1, 𝑥2
)

is fixed
and given by 𝑥2 > 4(𝑥1 − 0.5)2.

Circle [7] A 2D dataset that has a gradual concept drift. Each data
point has two features (𝑥1, 𝑥2) which are drawn from a uniform distri-
bution. The classification is decided by the circle equation

(

𝑥1 − 𝑐1
)2 +

(

𝑥2 − 𝑐2
)2−𝑟2 > 0, where

(

𝑐1, 𝑐2
)

is the circle center and 𝑟 is the radius.
The centers and radius of this circle are changed over time resulting in
a gradual concept drift.

CovCon [8] A 2D dataset having both covariate and concept drift. In
each batch 𝑡, data points (𝑥1, 𝑥2) are drawn from a Gaussian distribution
with mean ((𝑡 + 1)%7)∕10 and a fixed standard deviation of 0.1 which
introduces covariate drift. The decision boundary of a data point is
given by 𝛼 ∗ sin(𝜋𝑥1) > 𝑥2. Every 10 batches, the inequality of the
decision boundary shifts from > to < and vice versa introducing an
abrupt periodic concept drift.

7.2. Real-world datasets

We experiment with three real-world datasets Electricity, Covertype
6

and Airlines which have unknown concept and covariate drifts. For each
dataset we split the data points into 100 batches and use 25 batches for
the offline phase.

Electricity [18] A binary classification dataset with the task to predict
rise or fall of electricity prices in New South Wales, Australia. The data
has concept drift due to seasonal changes in consumption patterns.

Covertype [19] Dataset containing 54 cartographic variables of wilder-
ness in the forests of Colorado and labels are the forest cover type. We
use binary version of the dataset from the LibSVM library [20].

Airlines [14] Dataset with five nominal and 2 numerical features de-
scribing the airlines, flight number, duration, etc. of various flights. The
classification task is to predict if a particular flight will be delayed or
not. We use the version from the Sklearn Multiflow library [21].

7.3. Query distributions

For each synthetic dataset, we generate 100 queries in each batch 𝑡
from two different query streams.

In the first query stream, the queries are sampled from the data
stream. We randomly sample 10% of the data entries in every batch and
assign them as queries. Here, the points 𝑥 ∈ 𝐗𝑡 are used as queries 𝑞 in
the experiment while the labels 𝑦 ∈ 𝐲𝑡 are used during evaluation. We
use the suffix ‘‘-D’’ for datasets with the first query stream. For example,
CovCon-D is the CovCon dataset with queries sampled from data stream.

In the second query stream, queries come from a static Gaussian
distribution centered at (0.5, 0.5) with a standard deviation of 0.015.
Here, we use the known concept to generate ground-truth labels 𝑦 for
each query which are used during evaluation. We use the suffix ‘‘-S’’
for datasets with the second query stream. For example, CovCon-S is
the CovCon dataset with static queries. These different query streams
will highlight the adaptability of the retraining algorithms to different
query distributions.

For real-world datasets, we only consider the first stream of queries
sampled from the data stream.

7.4. Baselines

The Cara variants are categorized as single-model, informed, model-
independent retraining methods as per the taxonomy of Gama et al.
[1] discussed in Section 2. Therefore, we compare Cara against four
baselines which also take a model-independent approach to make
retraining decisions for a single model, described below.

ADWIN This method uses the signal from the model-independent drift
detector proposed by Bifet and Gavaldà [3] to make Retrain deci-
sions. In detail, this method maintains statistics of the model’s error rate
over two sliding windows corresponding to old and new data. When
these window statistics differ beyond a specific threshold, a data drift
is detected, and a signal is raised. If a signal is raised, the method makes
a Retrain decision at the end of the corresponding batch.

DDM This method uses the signal from the drift detector proposed
by Gama et al. [2] to make Retrain decisions. The method monitors
the online error rate of the current model on the data stream. When
this online error rate increases beyond a certain threshold, the detector
assumes that a drift has occurred in the data stream and raises a signal.
If a signal is raised, the method makes a Retrain decision at the end
of the corresponding batch.

Markov This method makes Retrain decisions based only on the
current model staleness cost 𝛹

(

𝑡, 𝑡′
)

and retraining cost 𝜅𝑡. The decision
function of the method is described below in Eq. (17).

(𝑡, 𝑡′) =

{

𝙺𝚎𝚎𝚙 𝛹
(

𝑡, 𝑡′
)

< 𝜅𝑡 (17)

𝚁𝚎𝚝𝚛𝚊𝚒𝚗 otherwise
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Fig. 3. (a) Varying query distribution. The red lines indicate the offline optimal Cara-T strategy (markers and solid lines correspond to Retrain and Keep decisions respectively).
(b) Varying the retraining cost.
This baseline always makes Markovian decisions and is similar to
an uncalibrated Cara-T variant where the threshold is always the model
retraining cost 𝜅𝑡.

Oracle This method uses the retrospectively optimal retraining strategy
to make Retrain decisions. Specifically, we compute the online cost
matrix and use the Oracle algorithm (see Section 6) to obtain the
optimal retraining strategy. This optimal retraining strategy has the
lowest strategy cost, and therefore, the Oracle baseline is a lower bound
on the strategy cost for all retraining algorithms.

In addition to the above baselines, we also compare against the NR
(Never-Retrain) baseline, which is a trivial blind method that always
makes a Keep decision and never retrains the model. Therefore, the
decision function of this baseline is (𝑡, 𝑡′) = 𝙺𝚎𝚎𝚙. The retraining
strategy from this baseline is to always use the oldest trained model in
a stream. Moreover, as the retraining cost increases, all other retraining
algorithms should ideally devolve into the NR strategy.

7.5. Evaluation metrics

For each retraining strategy from a retraining algorithm we report
the strategy cost and number of Retrain decisions along with the
following two metrics.

Query Accuracy We perform a prequential [1] i.e., test-then-train
evaluation. For example, if a Retrain decision is made in batch 𝑡 to
update the model 𝑀𝑡′ , the model is used first to answer queries 𝑄𝑡 and
then retrained with data 𝐷𝑡 to produce the model 𝑀𝑡. In this manner we
compute the query accuracy at every batch and then report the average
query accuracy. To achieve this, we stagger the strategy of a retraining
algorithm by one batch to determine the model to be used in answering
the queries. Higher values are good and indicate that the retraining
algorithm is able to answer queries effectively.

Strategy Cost Percentage Error (SCPE) We compute the relative dif-
ference between a retraining algorithm’s strategy cost and the optimal
strategy cost from the Oracle baseline. Percentage error is defined
as PE = 100 × |(𝑏 − 𝑎)|∕|𝑏|, where 𝑏 and 𝑎 are the theoretical and
experimental values respectively. Lower values are good and indicate
that the retraining algorithm is closer to the optimal Oracle algorithm.

7.6. Implementation details

For experiments, we use a Random Forest (RF) classifier from the
Scikit-Learn library [22] as the model. For each experiment we use five
random seeds and average the results over the seeds. The ADWIN and
DDM baselines are implemented using Scikit-Multiflow [21].

For all Cara variants we select the length scale 𝛾 of the RBF kernel
based on the number of features 𝑑. During the offline phase, we
construct the offline cost matrix as described in Eq. (4). Then for the
7

Cara-T and Cara-CT variants, we use the dual annealing optimizer from
SciPy [23] to find the optimal parameters 𝜏∗ and 𝜏∗cum. For the Cara-P
variant we perform a linear search over 𝜙 ∈ [1, 𝑇offline] to find the
optimal parameter 𝜙∗. We use these optimal parameters to evaluate
Cara variants during the online phase.

All experiments were performed on a Linux machine with 32 cores
and 50 GB RAM. The data and code used in our experiments is available
at https://version.helsinki.fi/ads/cost-aware-retraining-algorithms.

8. Experimental results

In this section, we independently vary the staleness and retraining
costs and analyze their trade-offs.

8.1. Varying staleness cost

We study the effect of the model staleness cost on the decisions of
a retraining algorithm. Towards this, for a given dataset, we keep the
retraining cost 𝜅 fixed and vary the query distribution to change the
model staleness cost.

Fig. 3(a) presents the offline cost matrices at 𝜅 = 20 for the
CovCon-D and CovCon-S datasets, which have non-static and static
query distributions, respectively. We also show the retraining strategies
of the Cara-T variant after finding the optimal threshold 𝜏∗ from the
cost matrices. These retraining strategy are shown in the figure using
a set of solid lines and markers which correspond to the Keep and
Retrain decisions, respectively.

There are three main takeaways. First, the staleness cost captures
both covariate and concept drift, seen by the gray regions and black
checkerboard regions in the cost matrix of CovCon-D. Second, the
staleness cost is query-aware, i.e., cost increases only when the queries
are affected by concept or covariate drift. We see this query-awareness
in CovCon-S, where fewer regions have a high staleness cost due to
the static query distribution. Thirdly, for the given retraining cost,
Cara-T adapts to CovCon-S making far fewer Retrain decisions than
in CovCon-D.

8.2. Varying retraining cost

We study the effect of the retraining cost on the retraining decision
by fixing the query distribution and varying 𝜅 for the CovCon-D dataset.

First, for a range of 𝜅, we find the optimal parameters 𝜃∗ for
each Cara variant using the offline cost matrix for every retraining
cost as seen in Fig. 3(b). These optimal parameters implicitly control
the decisions the retraining algorithm makes in the online phase. For
example, when 𝜅 ≤ 50, Cara-P makes a Retrain decision every other
batch because the optimal periodicity 𝜙∗ = 2. However, when 50 ≤ 𝜅 ≤
125, fewer Retrain decisions will be made because 𝜙∗ = 10.

https://version.helsinki.fi/ads/cost-aware-retraining-algorithms
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Fig. 4. Strategy cost, number of retrains and query accuracy as a function of retraining cost for the CovCon-D dataset.
Fig. 5. Strategy cost, number of retrains and query accuracy as a function of retraining cost for the Airlines dataset.
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Next, we evaluate every retraining algorithm in the online phase
sing the optimal parameters for a range of 𝜅 (see Appendix B). In

Fig. 4, we present the evaluation metrics for the CovCon-D dataset as a
function of the retraining cost 𝜅. There are three main takeaways. First,
Cara variants have strategy costs close to the optimal Oracle baseline,
effectively balancing the cost-trade-off. Second, as the retraining cost
increases, Cara implicitly reduces the number of Retrain decisions
by minimizing for strategy cost. Third, the query accuracy of Cara is
omparable to ADWIN and DDM baselines, except in regions of very
igh retraining cost, where it has high variance.

.3. Real-world data analysis

We analyze the online performance of the Cara variants in the three
eal-world datasets for a range of retraining costs 𝜅. Figs. 5–7 present
etailed online evaluation metrics as a function of 𝜅 for the Airlines,
lectricity and Covertype datasets respectively. There are three main
bservations.

First, Cara variants learn to retrain more frequently in regions of low
etraining cost, similar to the Oracle baseline. This retraining results in
igher query accuracy compared to the drift detection baselines. Sec-
nd, based on the dataset, Cara variants adapt to retrain less frequently
n regions of moderate retraining cost. For example, when 𝜅 > 2.5, all
ara variants (and the Oracle baseline) choose to retrain fewer than
en times in the Electricity dataset. Whereas, in the Covertype dataset,
ara variants drop to fewer than ten retrains only when the retraining
ost is relatively higher. Third, Cara variants are very conservative in
8

egions of high retraining cost and retrain infrequently. Here, we also e
bserve a gap between the Oracle baseline and Cara variants in strategy
ost and query accuracy while the number of Retrain decisions
emains similar. This performance gap indicates Cara variants make few
uboptimal Retrain decisions that in high-cost regions. Hence, there
s scope for improvement through designing more complex variants of
he Cara algorithm.

. Discussion

This section presents the aggregated results for all retraining algo-
ithms and datasets and discusses the key takeaways. First, Section 9.1
ompares each retraining algorithm against the Oracle baseline and re-
orts the average percentage error in strategy cost. Second, Section 9.2
ompares the average query accuracy against the number of Retrain
ecisions taken for each algorithm. Lastly, Section 9.3 compares and
iscusses the different Cara variants’ performance.

.1. Strategy cost results

We present the mean SCPE over the retraining costs in Table 2.
here are three main takeaways from these results. First, Cara variants
ave the lowest SCPE amongst all algorithms in almost all datasets.
ven in the Covertype dataset, where the Markov baseline has the lowest
CPE, the Cara-T variant is close to the Markov baseline. Second,
ara-T has the least SCPE amongst all Cara variants consistently. In the
ovCon-D and Airlines datasets, Cara-P has a lower SCPE, indicating an

ntrinsic periodicity in the underlying data or query distribution. How-

ver, in other datasets that do not present periodicity, such as CovCon-S
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Fig. 6. Strategy cost, number of retrains and query accuracy as a function of retraining cost for the Electricity dataset.
Fig. 7. Strategy cost, number of retrains and query accuracy as a function of retraining cost for the Covertype dataset.
Table 2
Average SCPE for all algorithms and datasets. Lower is better.

Dataset Cara-T Cara-CT Cara-P NR Markov ADWIN DDM

CovCon-D 17.72 19.26 16.3 141.12 40.85 163.05 71.81
CovCon-S 15.58 22.94 104.79 191.38 25.17 305.52 106.03

Circle-D 45.61 47.29 84.96 350.75 185.16 108.59 115.83
Circle-S 33.89 45.15 79.34 305.75 193.38 132.77 109.38

Gauss-D 8.63 59.93 135.95 17.05 9.67 468.27 306.49
Gauss-S 66.62 96.38 202.09 169.52 105.51 628.08 433.44

Electricity 8.32 40.32 64.07 17.08 11.01 285.78 156.55
Airlines 6.11 5.48 5.45 141.13 8.99 86.41 99.95
Covertype 26.39 27.92 38.37 188.85 25.61 73.63 57.12

and Gauss-S, the Cara-P algorithm performs worse than other Cara
ariants due to unnecessary Retrain decisions. Third, the ADWIN and
DM baselines always have a high mean SCPE due to their inability to
dapt to the change in query distribution and retraining costs.

.2. Query Accuracy & Number of Retrain Decisions

Tables 3 and 4 present the mean query accuracy and number of
etrain decisions, respectively. There are three takeaways. First, the
racle baseline has better or similar query accuracy than the drift
etection baselines ADWIN and DDM, which retrain more frequently.
econd, the Cara variants have query accuracy close to the Oracle
aseline. Lastly, looking at the average number of Retrain decisions,
e see that Cara variants are very similar and only slightly higher
9

Table 3
Average query accuracy for all algorithms and datasets. Higher is better.

Dataset Cara-T Cara-CT Cara-P Oracle NR Markov ADWIN DDM

CovCon-D 0.7 0.71 0.76 0.76 0.48 0.56 0.76 0.72
CovCon-S 0.79 0.79 0.61 0.8 0.47 0.66 0.85 0.81

Circle-D 0.96 0.97 0.95 0.97 0.85 0.89 0.97 0.94
Circle-S 0.93 0.93 0.91 0.96 0.91 0.92 0.95 0.92

Gauss-D 0.9 0.88 0.8 0.92 0.9 0.9 0.88 0.9
Gauss-S 0.99 0.99 0.98 1.0 1.0 1.0 0.93 0.85

Electricity 0.68 0.69 0.7 0.71 0.64 0.64 0.72 0.73
Airlines 0.6 0.6 0.6 0.62 0.54 0.58 0.62 0.6
Covertype 0.66 0.7 0.67 0.76 0.53 0.66 0.8 0.76

Table 4
Average number of Retrain decisions for all algorithms and datasets.

Dataset Cara-T Cara-CT Cara-P Oracle NR Markov ADWIN DDM

CovCon-D 13.89 13.33 10.75 11.2 0 7.18 44.8 20.4
CovCon-S 10.05 10.22 9.68 8.21 0 5.99 44.8 20.4

Circle-D 5.67 7.49 5.41 3.89 0 2.13 11.0 4.2
Circle-S 3.56 6.06 5.41 3.09 0 1.42 11.0 4.2

Gauss-D 2.62 6.29 7.29 2.23 0 1.88 31.8 22.2
Gauss-S 2.57 5.04 5.85 1.92 0 0.92 31.8 22.2

Electricity 2.39 5.08 7.83 2.36 0 1.53 20.0 11.6
Airlines 27.69 25.29 24.43 25.23 0 23.12 24.0 10.6
Covertype 16.62 17.9 17.06 19.42 0 15.66 43.2 26.0
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compared to the Oracle baseline. Furthermore, in datasets where the
NR baseline has high query accuracy, such as Circle-S and Gauss-S, the
ara variants learn to make fewer Retrain decisions compared to the
ADWIN and DDM baselines.

9.3. Discussion on different Cara variants

Each variant of Cara exhibits specific properties valuable in different
se cases.

First, as defined in Eq. (8), Cara-T relies on a single threshold
nd, therefore, is highly sensitive to changes in the model staleness
ost. The variance of the optimal threshold 𝜏∗ found during the offline
hase (seen in Fig. 3(b)), especially in regions of high retraining cost,
s reflected in the variance of the metrics such as strategy cost and
uery accuracy (seen in Fig. 4). Nevertheless, due to this sensitivity,
ara-T has the lowest strategy cost amongst all the Cara variants across
atasets and query distributions, as discussed in Section 9.1.

Second, Cara-CT makes a Retrain decision when the cumulative
taleness cost crosses a threshold, as defined in Eq. (9). Therefore,
ara-CT is conservative by design, making fewer Retrain decisions

than Cara-T while adapting to changing model staleness costs. We see
this conservative nature in the low variance of strategy cost and query
accuracy in Figs. 4 and 5. However, this performance stability comes
with a slightly higher strategy cost, as seen in Table 2.

Third, Cara-P is a standard periodic adaptation policy. As seen in
Section 8.1, Cara-P performs well and has a low strategy cost when the
data (or queries) follow a periodic pattern. However, when the data
(or query) distribution does not exhibit an apparent periodicity, Cara-P
makes several unnecessary Retrain decisions with a higher strategy
cost.

10. Conclusion

In our paper we studied the trade-off between the model staleness
and retraining costs. Towards this, we motivated and defined the
model staleness cost as the increase in the model’s misclassifications
in the region of the query. Further, we measured the retraining cost
in the same metric which allowed us to compute the strategy cost of
a retraining algorithm. We presented Cara, our cost-aware retraining
lgorithm which optimizes for the trade-off by minimizing the strategy
ost. Through our analysis on synthetic data we demonstrated that
ara variants are able to adapt to both concept and covariate drifts in
ata and query streams. Furthermore, we show that Cara variants have
ower number of Retrain decisions as a consequence of minimizing
or strategy cost while having query accuracy comparable to drift
etection baselines such as ADWIN and DDM. We also developed a
etrospective optimal Oracle algorithm which we used as a baseline in
ur experiments as the lower bound the strategy cost of any retraining
lgorithm. We observed that amongst all Cara variants, Cara-T had
he lowest strategy cost percentage error with respect to the Oracle
aseline across both real-world and synthetic datasets. Lastly, in real-
orld datasets, Cara-T had query accuracy comparable to the DDM and
DWIN baselines while making fewer Retrain decisions.

Our current work has several limitations and potentials for future
esearch. First, the current implementation of the staleness cost com-
utes pairwise similarities which has a considerable computational cost
hen the number of data points in batch are large. Therefore, exploring

he use of k-dimensional (KD) trees or core-sets will increase efficiency
nd improve scalability to larger datasets. Second, in regions of high
etraining cost there is a gap between the performance of Cara variants
nd the Oracle baseline. Hence, using Reinforcement Learning (RL)
ased approaches to learn more complex decision functions during
he offline optimization phase will lead to more robust retraining
lgorithms with better performance. Lastly, in our experiments the
etraining cost 𝜅 was static, and the Cara variants were optimized in
he offline phase for a given retraining cost. A future research direction
s to study and develop retraining algorithms for a non-static retraining
10

ost i.e., retraining cost which can change during each batch.
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ppendix A. Methodology

.1. Scenario 1

In Fig. A.8, we present an extended version of the scenarios dis-
ussed in Section 4. Here, the scenario here spans across four batches,
he initial data at batch 𝑡 = 0 shown in Fig. 1(a) and the final batch at
= 3 shown in Fig. 1(b) and (d). At 𝑡 = 3, we see the data has clearly
rifted away with more class 0 data points being on the incorrect side of
he decision boundary of initial model 𝑀0. In Fig. 1(b), the queries are
ar away from the decision boundary and would therefore be classified
orrectly by 𝑀0. We see in Fig. 1(c) where the staleness cost for the first
ow corresponding to model 𝑀0 is low. The Oracle retraining strategy
ndicated by the red line also suggests that the initial model need not
e updated in this scenario. In Fig. 1(d), the queries are much closer to
he decision boundary of 𝑀0 and the data misclassifications. Therefore,
e see in Fig. 1(e) the staleness cost increases steadily in the first row.
he Oracle retraining strategy is to retrain the model at 𝑡 = 2 to reduce

the staleness cost of keeping 𝑀0 at batches 𝑡 = 2 and 𝑡 = 3.

A.2. Scenario 2

In Fig. A.9, we provide an example of the second scenario discussed
in Section 4. In Fig. A.9(a)–(d) we see the query distribution moving to-
wards the classification boundary of the initial model 𝑀0. As expected,
the simple staleness cost 𝛹 defined in Eq. (1) increases with incoming
batches. However, in this scenario making a Retrain decision will not
improve query performance as the data points and labels are static. The
staleness cost 𝛹 defined in Eq. (3) mitigates this flaw. We see that the
𝛹 cost in Fig. A.9 is 0 indicating there is no cost to keeping the initial
model 𝑀 .
0
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Fig. A.8. Extended example scenario from Fig. 1. (a) Initial data and model 𝑀0. (b) Queries are far from misclassification. (d) Queries are closer to misclassifications. (c) and (e):
Cost matrix and Oracle retraining strategies with retraining cost fixed to 𝜅 = 1 for (b) and (d) respectively.
Fig. A.9. Extended scenario 2 from Fig. 2.(a)–(d) different batches of static data with moving query distribution. (e) Cost matrix computed using simple staleness 𝛹 (Eq. (2)). (f)
Cost matrix computed using staleness cost 𝛹 (Eq. (3)).
Appendix B. Online evaluation

We evaluate every retraining algorithm in the online phase using
the optimal parameters for a range of 𝜅. In Fig. B.10, we present the
online evaluation of all retraining algorithms for the CovCon-D dataset
at 𝜅 = 46, where the cumulative strategy cost is on the 𝑦-axis and the
online batches are on the 𝑥-axis. There are three takeaways. First, the
NR algorithm has the highest cost as it does not retrain, accumulating
staleness cost. Conversely, the Oracle algorithm has the lowest cost as
it is optimal. Second, the Cara-P variant is the closest to the Oracle
11
strategy cost, performing similarly to the Markov baseline. Third, al-
though the ADWIN makes several Retrain decisions, it has a strategy
cost similar to the NR baseline. This is because the ADWIN baseline is
not cost-aware and accumulates retraining costs from making excessive
Retrain decisions.

Appendix C. Synthetic dataset results

In this section, we present the results of all the synthetic datasets
described in Table 1.
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Fig. B.10. Online evaluation of all retraining algorithms for the CovCon-D dataset with
𝜅 = 46. The plot shows the cumulative strategy cost as a function of the online batches.

Fig. B.11 shows the results for the CovCon-S dataset which has a
static query distribution. Here, we see the ineffectiveness of the Cara-P
variant show in the significantly larger strategy cost. This large strategy
cost is due to unnecessary Retrain decisions being made even when
the query distribution is static. These decisions lead to accumulated
retraining costs which add to the total cost of the Cara-P retraining
strategy. Furthermore, the Retrain decisions are also poorly timed as
we see the query accuracy of Cara-P is lower than other Cara variants.
From these results, we conclude that periodic retraining strategies
cannot adapt well to aperiodic data and query changes.

In Fig. C.12, we present the results for the Circle dataset. We observe
that the number of Retrain decisions required is lower compared to
the CovCon dataset. Furthermore, the variance of the Cara-T variant is
seen in the query accuracy of Circle-S dataset, shown in Fig. C.12(b).
This variance is due to the sensitivity of the Cara-T variant discussed
in Section 9.

In Fig. C.13, we present the results for the Gauss dataset. We again
see that Cara-P performs poorly in both Gauss-D and Gauss-S, as seen
in Figs. C.13(a) and C.13(b). Interestingly, in Fig. C.13(b), we observe
that ADWIN and DDM baselines make frequent Retrain decisions,
however, have slightly lower query accuracy than other retraining
algorithms. On the other hand, the Oracle baseline and the Cara vari-
ants make much fewer Retrain decisions, resulting in lower strategy
ost, and have better query accuracy. Therefore, from these results, we
onclude that the Oracle and Cara variants can adapt better to drift
n data and query distributions while optimizing the trade-off between
etraining costs and model staleness.

ppendix D. Results with logistic regression model

This section studies the impact of the choice of model class on
he experiments and discussions from Sections 8 and 9. Towards this,
e change the model 𝑀 from a Random Forest classifier to a Lo-
istic Regression (LR) classifier. We use the SGDClassifier from
cikit-learn [22] with loss parameter set to ‘‘log’’. This loss parameter
esults in a LR classification model. Note, we do not perform an
xtensive grid-search and used the standard hyperparameters for the
odel. Therefore, the resulting trained LR model might perform poorly

or different data and query distributions. We share these result in
ables D.5 to D.7.

Comparing the SCPE in Tables D.5 to 2, we see that strategy
ost errors for all retraining algorithms are higher when using LR
12
lassifier. Furthermore, comparing Tables D.6 to 3, the query accuracies
re also lower for all algorithms. For example, the query accuracy
or the Circle-S dataset, is 0.09 across algorithms indicating the LR
odel trained on the data was unable to answer the static queries

ccurately. These results indicate that the LR classifier is unable to
ffectively model the non-linearity in the data, especially for Circle-S

and Electricity datasets. Next, Cara variants make far fewer Retrain
decisions compared to ADWIN and DDM baselines, as seen in Ta-
ble D.7. Nevertheless, Cara variants have good query accuracy and
low strategy cost. Finally, the overall trends discussed in Section 9 still
hold, i.e., Cara-T and Cara-CT have low strategy cost and their query
accuracy is comparable to the Oracle baseline.

Appendix E. Results with incremental algorithms

In this paper, we study retraining algorithms that decide whether to
Retrain or Keep an existing ML model in the presence of data drifts.

hen a Retrain decision is made, the prior model is discarded, and
a new model is trained from scratch using the new data. Incremental
algorithms offer an alternative decision called Update to handle data
drifts. When an Update decision is made, the prior model is retained,
and the new data is used to update the prior model parameters in-
crementally. In this section, we discuss experiments with incremental
algorithms.

Incremental algorithms are fundamentally different from the re-
training algorithms described in Section 3 for two main reasons. First,
incremental algorithms make different decisions (i.e., Update de-
cisions instead of Retrain decisions). Moreover, incremental algo-
rithms specifically require models that support incremental learning
to make Update decisions. On the other hand, retraining algorithms
are model-agnostic, as every ML model can be retrained from scratch.
Second, information from prior data batches is present in the model
parameters after an Update decision. In contrast, retraining algorithms
only have access to the current data batch when a Retrain decision is
made because the prior model is discarded. Therefore, due to this access
to prior data, incremental algorithms operate outside the constraints of
the batch setting for retraining algorithms as defined in Section 3.

Furthermore, these differences vary significantly based on the
choice of model and the implementation of incremental learning for
the given model, as shown by Chen [24]. For example, incrementally
updating a multilayer perceptron (MLP) is fast, and they quickly forget
prior data after updating compared to a retrained MLP. On the other
hand, decision trees (DT) take longer to update and retain more prior
data after updates than a retrained DT.

Regardless of the above differences, an incremental algorithm offers
an alternative trade-off between the model performance and resources
utilized compared to a retraining algorithm. Therefore, in this section,
we study and compare the trade-off offered by incremental and re-
training algorithms, specifically between the average query accuracy
and the time spent in retraining/updating. Towards this, we choose
the Hoeffding Tree Classifier (HT) [13] as the base model 𝑀 , which is
similar to the Random Forest classifier used in our original experiments
(see Section 8). The HT model is a decision tree with incremental
learning which uses the Hoeffding bound to make optimal choices on
splitting nodes in the decision tree after observing new data points.
We use the Scikit-Multiflow [21] implementation with retraining and
incremental update methods.

In the following experiments, we compare three retraining algo-
rithms (Cara-T-Retrain, ADWIN-Retrain, and Always Retrain) against
three incremental algorithms (Always Update, ADWIN-Update, and
AT-Update). The Cara-T-Retrain and ADWIN-Retrain algorithms are

he previously introduced Cara-T variant (see Section 5), and ADWIN
aselines (see Section 7.4) are renamed to highlight that the algo-
ithms make Retrain decisions explicitly. The Always Retrain and
lways Update algorithms are uninformed (or blind, as per Gama et al.
1]) algorithms which make decisions without checking for data drifts.
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Fig. B.11. Strategy cost, number of retrains and query accuracy a function of retraining cost for the CovCon-S dataset.
Fig. C.12. Strategy cost, number of retrains and query accuracy as a function of retraining cost for the Circle dataset.
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s their name suggests, they always make a Retrain or Update
ecision, respectively. Next, the ADWIN-Retrain and ADWIN-Update
lgorithms use the model-independent ADWIN [12] drift detector and
ake a Retrain or Update decision, respectively, when a signal is

aised from the detector. Lastly, the HAT-Update algorithm implements
he model-specific HT incremental algorithm from Bifet and Gavaldà
12]. This algorithm uses ADWIN as a drift detector internally in
ach node of the decision tree. When a drift in the performance of a
ode is detected, an alternate tree branch is trained and then swapped
ut when performance degrades further. Therefore, due to its model-
pecific implementation, the HAT-Update algorithm makes an Update
ecision for every batch to process the data and internally updates the
odel. The main difference between the HAT-Update and Always Update

lgorithms is that the HAT-Update algorithm is specifically designed to
andle data drifts for the HT model.

The trade-offs offered by the different retraining and incremental
lgorithms are shown in Fig. E.14. In each plot the 𝑥-axis is the total
13

t

ime spent either retraining or updating the model when a Retrain
r Update decision is made. The 𝑦-axis shows the average prequential
uery accuracy for each algorithm. We analyze these results in detail
nd observe the following four insights.

First, Only the Cara-T-Retrain algorithm (Fig. E.14 green line) offers
range of trade-offs between query accuracy and retraining time. The

ixed trade-offs are because the other algorithms make a fixed set of
ecisions based on the data drift and do not consider the cost of a
etrain or Update decision. In contrast, the Cara-T-Retrain algo-
ithm offers different trade-offs based on the retraining cost parameter
value. For example, in the Covertype dataset (Fig. E.14 bottom-left),

s 𝜅 reduces, more Retrain decisions are made, which take more
ime. The query accuracy and time spent by the Cara-T-Retrain variant
teadily increases till it achieves values similar to the Always Retrain
lgorithm.

Second, sometimes there is a small dip in the query accuracy of
he Cara-T-Retrain variant as the retraining time increases, as seen in
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Fig. C.13. Strategy cost, number of retrains and query accuracy as a function of retraining cost for the Gauss dataset.
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Table D.5
Average SCPE for all algorithms and datasets using a logistic regression model. Lower
s better.
Dataset Cara-T Cara-CT Cara-P NR Markov ADWIN DDM

CovCon-D 27.03 16.46 13.12 158.27 43.36 210.16 62.41
CovCon-S 55.61 126.68 449.28 256.81 50.05 852.72 230.38
Circle-D 840.88 1067.78 1170.57 2 370.12 2306.45 1879.82 1576.84
Circle-S 1635.49 626.12 1577.3 1 664.42 1645.01 2379.48 1833.82
Gauss-D 148.57 216.2 211.52 101.55 82.58 850.56 548.71
Gauss-S 387.83 275.75 1398.26 564.41 559.1 4490.27 3006.65
Electricity 1031.5 1830.55 6310.27 14 948.71 625.42 5230.54 3174.36
Airlines 11.68 35.89 31.38 25.11 10.38 211.51 90.32
Covertype 28.65 35.69 40.93 129.37 45.52 189.32 75.35

the Electricity (Fig. E.14 first column, third row) and Gauss dataset
(Fig. E.14 third column, first and second rows). Two factors cause this
drop in accuracy. The first factor is that the Cara variants optimize
for the strategy cost, not the query accuracy. Therefore, Cara variants
might make Retrain decisions, which reduces not only the strategy
cost but also query accuracy. The second factor is that, unlike the
Oracle baseline (see Section 6), the Cara variants are not optimal.
Therefore, Cara variants might make suboptimal Retrain decisions,
which may reduce query accuracy.

Third, In the CovCon dataset, the Always Update and ADWIN-Update
algorithms have very poor query accuracy, close to 50% (Fig. E.14 first
column, first and second rows). This poor query accuracy is because the
prior data is present in the model parameters after each Update deci-
sion. Therefore, due to this prior data and concept in the incrementally
updated model, the model misclassifies several queries when the abrupt
concept drift (see Section 7.1) occurs in the dataset. On the other
hand, HAT-Update performs better than the Always Update algorithm
because the model-specific incremental algorithm is designed to swap
out poorly performing decision branches when an abrupt concept drift
occurs. Similarly, the ADWIN-Retrain and Always Retrain algorithms
erform better than the Always Update algorithm because they make
14

a

Table D.6
Average query accuracy for all algorithms and datasets using a logistic regression
model. Higher is better.

Dataset Cara-T Cara-CT Cara-P Oracle NR Markov ADWIN DDM

CovCon-D 0.66 0.72 0.76 0.77 0.47 0.56 0.74 0.71
CovCon-S 0.67 0.56 0.45 0.62 0.47 0.54 0.91 0.9
Circle-D 0.81 0.8 0.81 0.77 0.82 0.82 0.81 0.82
Circle-S 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
Gauss-D 0.85 0.85 0.76 0.9 0.78 0.79 0.84 0.83
Gauss-S 1.0 1.0 0.95 1.0 1.0 1.0 0.7 0.59
Electricity 0.67 0.67 0.64 0.7 0.56 0.67 0.65 0.67
Airlines 0.56 0.57 0.56 0.57 0.55 0.56 0.59 0.56
Covertype 0.63 0.66 0.66 0.72 0.47 0.54 0.75 0.7

Table D.7
Average number of Retrain decisions for all algorithms and datasets using a logistic
regression model.

Dataset Cara-T Cara-CT Cara-P Oracle NR Markov ADWIN DDM

CovCon-D 11.71 11.85 10.2 10.55 0 6.02 46.0 17.0
CovCon-S 7.82 8.29 6.15 4.37 0 2.5 46.0 17.0
Circle-D 2.32 2.22 4.24 3.23 0 0.57 6.8 5.0
Circle-S 0.56 2.06 4.15 2.56 0 0.23 6.8 5.0
Gauss-D 4.72 7.78 5.28 1.32 0 0.57 28.2 19.0
Gauss-S 0.85 1.89 4.61 1.16 0 0.05 28.2 19.0
Electricity 18.48 14.13 10.56 13.57 0 20.46 13.2 10.0
Airlines 6.52 10.06 10.13 5.51 0 4.72 29.4 11.6
Covertype 12.2 12.59 11.11 9.29 0 5.77 43.6 17.0

Retrain decisions that discard the prior model and retrain a new
model from scratch. This retraining ensures that only the most recent
data and concepts are present in the new model resulting in fewer
misclassified queries.

Fourth, across all datasets, the Always Update (cyan marker) and the
AT-Update algorithm (navy blue marker) take more time compared to

he Always Retrain algorithm (purple marker) to achieve similar query

ccuracy. This behavior is because the HT model is a decision tree that
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Fig. E.14. Trade-offs offered by incremental and retraining algorithms when using a base Hoeffding Tree Classifier (HT) model. The first two rows correspond to synthetic datasets
and the third row corresponds to real-world datasets. In each plot the 𝑥-axis is the time spent by each algorithm in either retraining or updating the model and the 𝑦-axis is the
average prequential accuracy at the end of online evaluation. There are three retraining algorithms (Always Retrain, ADWIN-Retrain and Cara-T-Retrain) which make Retrain
decisions and three incremental algorithms (Always Update, ADWIN-Update and HAT-Update) which make Update decisions. HAT-Update is a model-specific incremental algorithm
for the HT model. The Cara-T-Retrain algorithm provides a range of trade-offs shown by a green line by varying the retrain cost parameter 𝜅. The other algorithms offer a fixed
trade-off indicated by square marker.
takes more computations to incrementally add more decision branches
to an existing tree than creating a new tree from scratch. This overhead
to update an existing tree is compounded in the HAT-Update algorithm,
where additional model-specific computations are required to handle
data drifts.

In conclusion, this section provided an overview of incremental
algorithms and their fundamental differences to retraining algorithms.
We experimented with a HT model that supports incremental updates
and evaluated several incremental and retraining algorithms across dif-
ferent datasets. From these experiments, we observed that incremental
algorithms offer a fixed-trade off between query accuracy and update
time, and that these trade-offs are heavily dependent on the model
implementation and the specific drifts present in the dataset. On the
other hand, we observed that the Cara-T-Retrain variant provides a
range of trade-offs by varying the retraining cost parameter 𝜅 which
is robust to different data drifts.
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